
Semantic Reasoner Based Change
Management Framework for Ev: LCS

M.Thirumaran 1, G.Gayathry@Brendha 2, Subham Soni 3
1, 2, 3 Department of Computer Science and Engineering, Pondicherry Engineering College,

Puducherry-605014,India.

Abstract- The need for dynamic business environments
and SOE (Service Oriented Enterprise) has increased
the purpose of using web services to a greater extent.
Long term composed services (LCS) are services that
prevail for longer time span, thus the requirement for
changes in these services become more prevalent. Thus,
managing these changes becomes an important task in
Web Services. Although, Change Management is a main
area of research, maximum exploration on ontology for
performing the changes has not yet been concentrated.
This paper mainly concentrates on providing a change
management framework based on a semantic
component called semantic reasoner for top-down
changes with the help of an enriched ontology to achieve
the following goals: (i) allow the business enterprises to
perform the incoming change requests with the help of
analyst (ii) determining the feasibility of the requested
change before the changes are implemented at service
level (iii) diminish the cost and time that is spent on
depending the IT professionals for implementing the
changes (iv) reduce the risk and errors that may arise at
service level after the changes have been implemented.

Keywords- Web Services, SOE, LCS, change
management framework, semantic reasoner, Ontology.

1. INTRODUCTION

Web services are a set of loosely coupled self -
contained related functionalities that they can be
programmatically invoked and published with the
help of a web. A web service has three participants: a
service provider, a service consumer and a registry. A
service provider publishes the description about its
services (Web Service Description Language (WSDL)
in an registry called UDDI (Universal, Description,
Discovery, Interface).A consumer searches this
registry to find the appropriate services that matches
the requirements using the description in the WSDL.
If an appropriate service has been discovered, the
consumer requests the service provider for the
services with the help of SOAP messages. The
services can also be requested with REST messages
where the information about the services and their
location should be known priorly. The process of
finding a suitable service for fulfilling the request is
called service Discovery. Service Oriented

Architecture (SOA) is a structure that uses the
services to provide Enterprise Solutions .These
solutions are built by combining the existing services
.The process of combining the services is called
Service composition.

The services can also be outsourced services. There
are two types of service composed services: Long
term composed services (LCS) and short term
composed services. Short term composed services
prevail for short span of time. e.g.: An university may
require services to publish its examination results on
web, such services are required only for that duration
whereas LCS services prevail for long time span. e.g:
A travel agency may require providing its services
through the web for a longer period of time. Due to
requests, complaints and growth in technology it may
be required to make changes in these LCS, which can
be of two types: top-down and bottom –up[1].
Bottom-up changes occur when the request for the
change arises from the outsourcing services. Top-
down changes can be achieved only through the LCS
owner [2].

But incorporating and managing the changes is not an
easy task because there are number of drawbacks in
the existing frameworks as well in the services .In the
existing techniques, to incorporate even a small
change in the existing LCS, the IT professionals were
summoned which lead to the increase in cost and time
for the enterprise owners. To perform the changes by
the analyst, he should be educated about the details of
the services. But the WSDL description of web
services are syntactical and do not explicitly define
their functionality, on the other hand semantic web
services that incorporate ontology for the services
provide information about the functionality of the
services. Further, in the existing systems there are no
techniques that will tell about the services that have to
be considered before and after making the changes.
Thus, all these pit falls have led to a question :” How
to build a framework that will soothe the burden on
the analyst and assist him in implementing the
changes ?”. Hence, this research mainly concentrates
on top-down changes with the help of Semantic web

M.Thirumaran et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1439-1450

www.ijcsit.com 1439

services and an enriched ontology, so that the exact
context ,requirements etc. for the change request can
be identified.

Ontology is a form of knowledge representation that
describes the concepts of a service .It is also used to
determine the relationship, types and properties of the
service concepts, which is used to classify the web
services within a domain. Therefore, we provide a
change management framework which is semantically
driven to furnish the required information from
ontology to satisfy the requested change. Before the
changes are implemented at the service level, a prior
knowledge about the feasibility of the requested
change is provided by a special component called
semantic reasoner that uses ontology. Since the
execution of the requested change is verified in
advance, errors that may arise in the service level due
to the implementation of the requested change are
prevented. Along with this, to perform the changes
successfully, there arises a need to maintain the state
information about the services until the process of
enacting the changes has been completed. Therefore,
the semantic reasoner is also assisted by the Finite
State Machine (FSM) graph to maintain the state
information of services based on the context of the
change request.

In Section 2, we discuss the factors in the related
works that motivated us to design our Semantic
change Management Framework. Section 3 provides
us a detailed description on our Semantic Change
Management framework. The scenario that will be
used for explaining our framework is discussed in
Section 4. Following this the algorithms in our
framework is provided in Section 5. Section 6 deals
with the results obtained on various LCS sets. We
then brief about the contributions made by our
framework in Section 7. Finally, we provide the
conclusion and future enhancements of our
framework in Section 8.

2. RELATED WORKS

2.1. Related works on Change Management

 The change management framework [2]
discussed by Akram et al combines the ordinary and
re-configurable petrinets to deal with the incoming
bottom up change requests. Algorithms called change
detection, change management and change reaction
algorithms are executed on these petrinets to maintain
the workflow of the services. The changes

implemented are not verified and further the
construction of petrinets becomes challenging when
the number of services to be included increases. The
same author in the architecture described in [3] uses
request brokers for performing the requested change
.The ontology used is a domain ontology which is
used by the request brokers to decompose the request,
select the appropriate services, invoke the selected
services, perform the changes and finally to provide
the results to the user. Allocating an instance of the
broker to each user becomes an overhead in this
architecture. The change management framework by
Xumin Liu [4] deals with top down changes .The
change to be made is first observed in the schema
graph, a graph derived from the ontological
representation. After successful verification the
change is implemented at the instance level. Although
semantics has been considered, it deals only with
single requests at a time and the essence of ontology
used for the purpose of change management is also
very limited. Xumin Liu along with Bouguettaya try
to automate the process of making top down changes
by proposing a change management framework which
has two components called change model and change
reaction. The work of change model is to specify the
requested top-down changes, while the goal of change
reaction is to enact the changes. Dimitris Apostolou et
al[5] present an ontology-based approach where
systematic response of e-Government systems is
obtained to by applying formal methods. They have
claimed that such a synthesis of systematic response
to changes with knowledge to deal with them has a
positive impact on the change management
process.The Table 1 discusses the advantages of our
framework with the existing Change management
framework. The above change management works
require IT professionals to perform the requested
change. Due to this the cost and time spent for these
people increases. Our work aims in creating an
environment to make the changes by the analyst itself
without the involvement of the IT people.

Further, the possibility of making is a successful
change is not verified before it is being implemented
at the service level. Therefore, our framework uses a
parsing technique to determine the possibility of
making the change so that the burden at the analyst
side is reduced. Finally, the observed change
management frameworks use petrinets which has
many disadvantages like petrinets can be represented
only as tasks and are useful for change management
scenario where the changes are made by the IT
developers

.

M.Thirumaran et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1439-1450

www.ijcsit.com 1440

TABLE 1

Comparison of Existing Change Management Frameworks

Frameworks Memory
usage

Prior
Determination
for
Implementing
changes

Automatic
verification
and
validation

Probability
to reach
correct
states

Professionals
involved in
enacting the
changes

Consideration
of context for
enacting the
change

Information
provided in
the ontology

Existing
Frameworks

High No No Low IT developers No Domain

Semantic
Reasoner
Based Change
Management
Framework

Low Yes
[technique:
Predictive
parsing]

Yes
[technique:
FSM]

High Analyst Yes
[technique:
FSM and
ontology
representing
functionality
of services]

Functionality
of the
services.

But in our framework we use FSM which are designed
in terms of states and actions, as result all the services
are represented in terms of states so that the exact state
in which the requested change has to be incorporated
can be easily known by the analyst. Since petrinets are
complex structures they require higher memory
capacity for its storage due to which there is high
degree for reaching undesirable states.

2.2. Related works on web services

Paliwal et al [6] initially uses the domain
information in the ontology to categorise their services.
However, within a domain there may be number of sub-
domains, to perform clustering the services based on the
sub-domains the author uses a hierarchical clustering
algorithm. To discover the closest services based on the
user’s request the system uses a technique called Latent
Semantic indexing. Though the closely related services
are extracted, the extracted service differs in the
invocation order of the existing services. Therefore, in
the service discovery model [7] the descriptions about
the services were stored in OWL-S. Due to this,
appropriate services that matched the user request were
selected. However, this model returned multiple
requests in which some were not relevant as the context
of the request was taken into consideration. To
overcome this problem, the distance between the
concepts in the ontology was determined by a tree
structure called semantic distance and semantic distance
matchmaking algorithm [8]. However, the issue was in
the time spent on creating this concept tree as it was a
complex task.

The issue discussed in [7] was also addressed by
Mastroiannai [9] which used a P2P framework to place
the descriptors of closely related service thereby
reducing the cost as the search time will reduced.
Further, the discovery systems discussed so far did not
provide solution to cases of relocation of services,

whereas statistical values like co-occurrence were
considered to locate the services after relocation by the
P2P framework. In a similar manner SMARTSPACE
[10], a middleware assisted by the algorithms smart
map and smart cluster was capable of making efficient
retrieval by reducing the search space on which the
request from the user is placed. Although the techniques
in [9] and [10] performed efficient discovery, they
could not provide solutions even if the already solved
requests were provided in a different context.

The author Parejo proposed an Qos-Gasp
algorithm [11] with path re-linking to compose
services based on the Qos value of the services under
composition. Although this algorithm provided low
cost and less execution time these advantages cannot
be promised as the algorithm was not tested using real
time datasets. Futher as this system did not include
semantic information it could not compose services
based on the context of the user. Thus the automation
system [12] uses a co-ordination engine that performs
service composition based on user context. The user
information is stored in the form of graph which is
constructed from the ontology. Based on this
information and the context of the user the co-
ordination engine will compose the services. But this
co-ordination engine can only compose services for a
single request at a time. The idea of using AI plans for
composition process was found to be more effective
in service composition by using the OOM algorithms
as discussed by the author Hatzi [13] who used these
algorithms to solve the AI plans. These plans used the
semantic information from the ontology that consisted
of service descriptions. The major issue faced by this
work was during the creation of AI plans as these
plans are difficult to be formulated. The work
discussed using FPPN (fuzzy predicate petrinet) [11]
determines composite services according to the user
requirements and behavioural context of the user

M.Thirumaran et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1439-1450

www.ijcsit.com 1441

based on the fuzzy semantics and service information
which are represented as a set of horn clauses.

From the discussed techniques we can conclude
that the scope for creating an enriched ontology set
for service discovery and composition has little
consequent effects, this is because the ontology for
them can be represented only at the data level,
whereas in change management ontology can be
created for business functionalities. Thus the
possibility of creating an enriched ontology is found
to be noteworthy in change management. Therefore,
we aim in creating an ontology that also includes the
functionality of the web services. Though the above
systems used different techniques like fuzzy, AI plans
etc. to maintain the context information, all of them
had many pitfalls like AI plans are generally very
complicate to create and solve; similarly, the fuzzy
techniques are not usually discrete, they do not
provide definitive answers and they are very difficult
to program. As a result, there will be high dependency
on the IT professionals if the above techniques are to
be used in our framework Therefore, we go for finite
state machine to maintain the context information of
the services because with the help of FSM, we can
represent the services at rule level, policy level etc. so
that changes can be made by the analyst easily
without the assistance of the IT people.

Similarly some methodologies aimed in providing
services based on the Qos because some enterprises
are concerned only about providing services that
would not violate their policies. Such a mechanism
was discussed by Szu-Yin Lin [14] whose goal was to
find services that matched with the user requirements.
In cases where multiple services had same number of
Qos, such services were ranked and the service with
highest rank was provided as a solution to the user. In
the [14] and [17] the Qos is considered only for
service discovery and composition. However, in our
work we use these Qos for change management by
taking into consideration the semantic information
provided for making the changes.

3. SEMATIC CHANGE MANAGEMENT
FRAMEWORK

 In this section, we will be discussing about
the workflow for our change management framework
and also the components of our proposed work.

3.1 Architecture of Semantic Change Management
Framework

 The architecture (Fig 1) will brief us about
the components in our framework. The framework is

made up of three main components: Ontology
Repository; Change Evaluation; Storage Subsystem.

3.1.1Ontology repository

The Ontology Repository consist the detailed
information regarding the logic set, dependency set,
relationship set ,constraints ,QoS Sets and operator
sets of each LCS ,thus forming an enriched Ontology.
This repository also provides input to various other
components of this framework. The logic set consists
of the rules, policies, function, parameters etc. of each
LCS. The call flow, I/O and data flow dependencies
are represented as dependency sets. The constraints
include sequential, parallel and concurrent constraints
.The QoS set may correspond to factors like security,
cost and performance of the LCS. The operator sets
determine the adding, removing, modifying or
updating a corresponding LCS for implementing the
change. This component will provide the required
information to the semantic reasoner for performing
the predictive reasoning process.

3.1.2. Storage subsystem

The Storage Subsystem contains a registry which is
holds the LCS set, WSDL and the grammar sets for
each LCS. This entire Subsystem acts as an input for
the request analyser and domain analyser stages. If
any major changes are executed in a LCS, it may lead
to its versioning, the input for performing such type of
versioning is also providing by the registry. The
versioning of the LCS are also correspondingly
recorded in the Change Audit Log.

3.1.3 .Change evaluation

Based on the request that emerged from the user’s or
from a higher level, a Change Query (Change
expression) is created by the analyst. This Query is
then analysed by the change analyser. The analysed
Query is then provided as an input to the three main
subcomponents of the framework, the subcomponents
include: a. Query Processor ; b. Sematic Reasoner ; c.
Predictive Parser.

a) Query Processor-The analysed query is first
processed by the query processor which fetches the
appropriate grammar for the Change Query from the
current and global LCS grammar sets. These grammar
sets are obtained from the respective global and local
semantic sets that are stored in the storage repository.
The grammar sets will be furnished with information
like the services, the operations that constitute the
services, rules and policies that are bonded with them.

M.Thirumaran et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1439-1450

www.ijcsit.com 1442

Fig 1. Semantic Change Management Framework.

b) Predictive Parser-The output of the Query
Processor is used by the Predictive Parser to
construct a Predictive Parsing Table. The
construction of the Predictive parsing table is a
dynamic process comprising of Prequel and Sequel
for the grammar. The ontology repository helps to
compute the Prequel and Sequel of the grammar sets.
The Prequel and Sequel provide information about
the resources (services, rules or policy) that should
be considered before and after making the change.

 c) Semantic Reasoner-The Semantic Reasoner is
responsible for carrying out the predictive reasoning
process, it is a process that utilises the predictive
parsing table to justify the implementation feasibility
for the change expression. The results of the
semantic reasoner are sent to the analyst, the analyst
then decides whether to implement the requested

change or not. The semantic reasoners will also
enlighten the analyst about the services that will be
affected by the change so that the analyst can make
decision on implementing the change so that he the
relationship among the services will not be disturbed.

After the successful implementation of the
change request, an FSM graph is formulated to
preserve the dependencies and also to support
concurrency. The FSM graph is a pictorial
representation of the LCS after change which also
assists the analyst to conclude on executing the
requested change. Following this, the change
evaluation metrics such as accuracy, degree of
automation, correctness, change reaction time;
change evaluation, risk, semantic correctness and
level of knowledge gained etc. are calculated.

M.Thirumaran et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1439-1450

www.ijcsit.com 1443

Fig 2. Workflow for SWCM Framework

Change Request

Request Reason Condition Active Set
Policy Rule Context

Request Analyser
Lcs

Grammar
Services Current

Set

Stack Input Symbol Parsing Production
Table

S2+S1 p1+p2 L->S1+S2

R12+R11 p1+p2 M(S1,p1)
S1->R11+R12

R12+p1 p1+p2 Match,M(R11,p1) R11-
>p1

R12+ +p2 Match

p2 p2 Match,M(R12,p2) R12-
>p2

Non-
Term

p1 p2 p3 +

Term

L L->S1+S2 L->S1+S2

S1 S1->R11+R12 S1->R11+R12 No edge S1->R11+R12

R11 R11->p1 R11->p1 No edge R11->p1

R12 No edge R11->p2 No edge R11->p2

S2 Policy not
applicable

Policy not
applicable

S2-
>R21

Policy not
applicable

R21 No edge No edge R21-
>p3

No edge

Semantic reasoner

public static void main(String[] args) {

OntModelmodel=………………………………………………………………

Schema Graph Schema

<html><body>
<form>
<input type=“text” name=“visa”>

…………………….……………….</html>

Query

LCS

Reference Grammar Set

Storage Subsystem

Travel

S1 S2

R1 R12 R2

3

FSM graph

Change Evaluation

Predictive Reasoning Table Predictive Reasoning

Ontology Repository

Query Expression

Accuracy Degree of
Automation

Correctness Precision Change reaction
time

Recall Risk

M.Thirumaran et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1439-1450

www.ijcsit.com 1444

3.2 Overview of the Framework

The workflow (Fig.2) will elaborate the change
management process that is being followed by our
framework. Initially, the request for making the change
will be received by the framework, which is then analysed
by the request analyser. The request analyser will extract
the appropriate LCS and the grammar sets that will be
relevant to the received change request will be extracted
from the storage subsystem. Following this, the schema
and the schema graph for the identified LCS are extracted.
The purpose for extracting the schema and schema graph
is to provide the knowledge about the relationship between
the existing services of the extracted LCS.

After making a thorough study on the schema and
the schema graph, the analyst will compose a change
expression (query) based on the received request. The
change expression is provided as input to the semantic
reasoner. The semantic reasoner is responsible for
predicting the possibility of implementing the change
expression with the help of the predictive reasoning table
and predictive reasoning process. The predictive reasoning
table is created dynamically based on the Prequel and
Sequel. Prequel for a service will determine the services or
rules that have to be executed before it. Similarly, Sequel
of a service will provide the information about the services
or rules that has to be executed after it. Following the
predictive reasoning table, the predictive reasoning process
will make the decision on the feasibility of the change
expression.

If the change is found to be feasible, the change
can be implemented at the service level. During this
process, the state information of the corresponding
services is maintained by the FSM graph until the change
management process is completed. The FSM graph will
educate the analyst about the state of each service in a LCS
at any stage of the change enactment process. Ensuing the
successful implementation of the requested change, the
incorporated change is evaluated with the metrics like
accuracy, degree of automation, precision, recall etc.

Thus, our framework with the help of the
semantic reasoner component helps the analyst to decide
on enacting a requested change. Further, our framework
will also specify about the services that may be affected
due to the requested change, so that the analyst will
consider necessary steps that has to be taken to maintain
the consistent relationship between the services.

4. SCENARIO FOR CHANGE MANAGEMENT
FRAMEWORK

Let us consider that Mr. John is running a travel
agency which is used for booking air tickets and hotel rooms
for its customers by providing their personal information. For
security purposes, the agency converts the customer details to
a hashed form and then sends it for booking the flight
information. After the tickets have been booked, the customer
details like date of journey etc. are sent in an encrypted form

to the hotel service where the rooms for the customer are
booked. Finally, the travel agency sends all the booked details
to the customer and the system waits for the payment. The
customer provides all his card details and makes a successful
payment. Since the service provided by the travel agency is on
the web, the payment details are encrypted to avoid any
hacking by the intruders on the web.

As the cyber threats are increasing comparatively along with
the technology, the analyst finds that both confidentiality and
integrity are not preserved at each stage. Therefore, he decides
to combine the policies p1 and p2 and provide them at each
stage of the booking process so that both confidentiality and
integrity are provided to the customers who use this travel
agency.

5. EXPERIMENTATION METHODOLOGY

 The methodology that is followed by the predictive parsing
table and predictive reasoning process will be discussed in
this section along with our travel scenario.

5.1. Predictive Reasoning Table

 The Predictive Reasoning Table can be computed only
after determining the Prequel and Sequel functions. The
results of these functions help us in filling the Reasoning
Table. The Prequel and Sequel are computed from the LCS
grammar. For each LCS, corresponding grammar notations
based on rules, services, policy etc. are created and stored in
the repository. Non-terminals and terminals for our
methodology will depend on the context of the incoming
request. For our scenario, since our request is to combine
two policies, the terminal symbols will be the policies
present the LCS grammar indicated in Fig 3.

Once the grammar for a LCS is extracted, we perform
predictive parsing which will parse the change expression to
determine whether the requested change is possible for
implementation. The analyst will perform the changes only
if it found to be feasible. To parse a change expression, the
Prequel and Sequel (section 4.2 and 4.3) of the LCS has to
be determined. Succeeding the computations of Prequel and
Sequel, a predictive parsing table are composed which will
help in predictive reasoning.

Fig 3. Grammar set for Travel Scenario

GRAMMAR EXPLANATION

L->S1+S2 S1→Airline

S1->R11+R12 S2→Hotel

R11->P1 R11→get customer details

R12->P2 R12→book air ticket

S2->R21 R21→get date of journey

R21->P3 P1→customer details in hash code

P2→journey details in encrypted form

P3→payment details in encrypted form

M.Thirumaran et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1439-1450

www.ijcsit.com 1445

5.1.1 Computing Prequel (α)

Prequel of a service is those services or rules or
policy that has to be executed before the service that has
been taken into consideration.

Therefore, Prequel (α) α is the set of services
(non-terminal) symbols and also for the composition
operators present in the grammar, then its Prequel can be
calculated from the following steps until there are no more
symbols to add.

1. If α is a non-terminal, from the ontology we
determine if any other terminal say β is
dependent onα. If such relationship exists
(β→α) then the Prequel (α) will be β.

2. If α is a non-terminal, from the ontology we
determine if any other non-terminal say β is
dependent onα. If such relationship (β→α)
exists, we determine the terminals that
belong to β and add them to the Prequel (α)

3. If the encountered symbol α is any of the
composition operator, then the terminal that
is present prior to it is determined and step 1
is followed.

With the help of the above mentioned rules,
the Prequel for the grammar symbols of our
travel agency scenario will result in as shown in
Fig 4:

Fig 4. Prequel for Travel Scenario

5.1.2. Computing Sequel (α)
The Sequel for a service will forecast about the

services or rules that should follow or will be affected by
the change.

 Sequel (α) for a LCS can be obtained from the
following steps,

1. If α is a non-terminal, from the ontology we determine
if α is dependent on any other any other terminal say
β. If such relationship exists (α→β) then the Sequel
(α) will be β.

2. If α is a non-terminal, from the ontology we determine
if α is dependent on any other non-terminal say β. If

such relationship (α→β) exists, we determine the
terminals that belong to β and add them to the Sequel
(α).

3. If the encountered symbol α is any of the
composition Fig 5. Sequel for Travel Scenario

operator, then add them to the Sequel (α).
Fig 5. Sequel for Travel Scenario

By applying the above rules, we can determine the Sequel
(Fig 5) for our case study discussed in section 4.

Once the Prequel and Sequel of the respective LCS
grammar set (LG)has been found ,we can generate a
Predictive Parsing Table for that grammar using the
algorithm (Fig 5).This algorithm takes a LCS grammar set
which consists of rules, services, policy, relationships,
constraints etc. and produces a Reasoning table as the
output. Find Prequel and Sequel of all terminals of the
production in LCS grammar. For Every service
composition of the form A→γ present in the LCS

Fig 6. Algorithm for Predictive Reasoning Table
grammar, if there are any terminals “α “present in the

Prequel (A) then the respective composition is added to the
Reasoning table R [A, α] .

Similarly, the Predictive reasoning table for the travel
agency scenario (Fig.7) will be computed based on the
algorithm present in Fig 6.

SYMBOL PREQUEL

F(L) F(L)=F(S1)=F(R11)={p1,p2}

F(R12) p2

F(S2) F(S2)=F(R21)=p3

SYMBOL SEQUEL

S(S1) {+}

F(R11) {+}

F(R12) {+}

Algorithm Predictive Reasoning Table (LG)
Input: LCS grammar set (LG) consisting of rules, services,
business policy, relationships, constraints etc
Output: A Reasoning Table (R).

Begin
For each production A→ γ of LG, continue
For each terminal a in Prequel (α) add A→ γ to R [A, α]
For each terminal b in Sequel (A).
End If
End For
End For
End For
End For

M.Thirumaran et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1439-1450

www.ijcsit.com 1446

Fig 7: Predictive Reasoning Table for Travel Scenario

5.2. Algorithm Predictive Reasoning (E, R)

On successful construction of the predictive
parsing table, the change expression has to be parsed to
determine its feasibility. This is done with the algorithm
(Fig 8) which works by taking a change expression (E)
from the analyst and an appropriate reasoning table (R) as
input. The goal of this algorithm is to find whether the
given change expression can be reached .i.e. reaches the $
symbol. Initially, the input is made to point the first
symbol of the query expression. We assume X (service,
rule or policy) to be the symbol in the top of the stack and
“Y” be the symbol pointed by the input. The symbol X is
popped from the stack when X is a terminal, $ or when
R[X, a] leads to any service composition.

Algorithm Predictive Reasoning (E, R)
Input: A Query Expression (E) and a Reasoning Table(R)
for the LCS grammar (LG).
Output: If E is in L (LG),a leftmost derivation of
otherwise error(e).
Begin
Set input to point to the first symbol of E$
Repeat
Let X(rule/policy/service/relationship/constraint)be the top
stack symbol and a the symbol pointed to by input
If (X is a terminal or $) then
pop X from the stack and advance input.
Else If (R[X , a]=X→Sk,Sk-1………..S)then begin
pop X from the stack
push Sk,Sk-1,………….,S1 onto the stack ,with S1 on top
output the production X→S1,S2,…………Sk
End
Else e().
Until X=$
End.

Fig 8: Algorithm Predictive Reasoning (E, R)

For our change request which is combining the
policies p1 and p2. The predictive reasoning process is
enforced on the change expression (p1 + p2) to determine
the possibility of its execution with the help of the
algorithm discussed in Fig 9. As a result, the stack
operations for it have been represented in Fig 8.

Fig 9: Predictive Reasoning Process for Travel Scenario

Initially, a $ is pushed onto the stack and the input
pointer is made to point the first symbol (p1) of the change
request. Since R[S1,p1] leads to a service composition
R11+R12, it is popped out from the stack. Now the top
element on the stack will be R11 which is again popped
from the stack and replaced by p1 as R11 leads to a service
composition R11→p1.The stack top and the first symbol
of the change expression will be the same and thus they
are popped from the stack and the input pointer is made to
point the next symbol in the change expression. Similarly,
the algorithm is followed till the $ symbol on the stack is
reached. On reaching the $ symbol, we conclude that the
change expression can be implemented successfully.
Following the Predictive reasoning process, the analyst
proceeds to implement the services at the service level.

6. RESULT ANALYSIS

Our Change Management Framework is
developed with help of software development
environments like Netbeans and a tool called Protégé.
Protégé is an ontology tool which has a graphical interface
helping us to create ontology. Once the ontology has been
created, a corresponding owl file for the created ontology
will be generated, which is used for inferring information
from the ontology. Similarly, Netbeans is an IDE that
provides an environment to develop and deploy the
services required for our LCS.The information from the
ontology can be inferred with the Jena API, which is a
Java library that can be added in the Netbeans environment
to perform the information retrieval from the ontology.

Based on the incoming change request, the
analyst will choose an appropriate LCS to make the
changes. The LCS size is the number of services that build
up the LCS. For instance: in our running example, the LCS
considered for parsing is made up of two services.
Therefore, the size of the LCS is two. The Table 2
calibrated by considering the various LCS size. The
highlighted results in the Table 2 are the results obtained
for our running example.

Non-Terminals p1 p2 p3 +

Terminals
L L->S1+S2 L->S1+S2
S1 S1->R11+R12 S1->R11+R12 No edge S1->R11+R12
R11 R11->p1 R11->p1 No edge R11->p1
R12 No edge R11->p2 No edge R11->p2

S2 Policy not
applicable

Policy not
applicable

S2->R21 Policy not
applicable

R21 No edge No edge R21->p3 No edge

Stack Input
Symbol

Predictive Reasoning
Table

$ S2+S1 p1+p2 L->S1+S2

$R12+R11 p1+p2 R(S1,p1)
S1->R11+R12

$R12+p1 p1+p2 Match, R(R11,p1) R11->p1

$R12+ +p2 Match

$p2 p2 Match, R(R12,p2) R12->p2

M.Thirumaran et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1439-1450

www.ijcsit.com 1447

Table 2

Result Analysis for Various LCS sizes during Successful Cases

The accuracy (1) measures the degree to
which the ontological information retrieved was
useful for successfully implementing a change
request. Accuracy is calculated as the as the
number of changes that were implemented
successfully (ܵܥ௜) by referring the Ontology (O)
over the total number of change requests that
arrived (TC). After a change is performed, it is
necessary that the correctness (2) of the system
including the relationship between the services is
maintained. It also ensures that there are
appropriate data flows (df) and control flow (cf)
edges to the services that have been modified due
to the change requests, it also assures that are no
break points (bp), null (nr) or invalid references (ir)
in the system. In our travel scenario discussed in
section 4, after implementing the change request,
we should ensure the data flow, for e.g. the
information of flight details should be sent to hotel
service. Similarly the control flow of the services,
i.e where the control should be redirected after a
service is executed. For e.g. in our scenario if a
person has provided his details he should be
redirected to the book flight service.

ݕܿܽݎݑܿܿܣ ൌ ∑
ቀௌ஼೔		∪ቀ

ೀᇲ
ೀ ቁ	ቁ

்஼
௡
௜ୀଵ --(1)

ݏݏ݁݊ݐܿ݁ݎݎ݋ܿ ൌ ሾ∑ ሼ൓ሺܾ݌ ൅ ݎ݅ ൅ ሻݎ݊ ൅ ݂݀ ൅௡
௜ୀଵ

݂ܿሽሿ ൈ 100 ----(2)

The time required for enacting a change
also plays an important role in evaluating our
framework; we aim to maintain this time minimum
because the latest enterprises consider time as their
major factor in their business. The change reaction
time (3) for a system is calculated as the sum of
time that is being spent in processing the change
query (QP) and the time that spent for referring the
ontology (OF) to achieve a successful change
.Since ontology is tree based representation, the
depth (ܮ௡ሻtill which the tree has been referred to
implement a change is measured in terms of level
of knowledge gained (4).

݁݉݅ܶ	݊݋݅ݐܴܿܽ݁	݄݁݃݊ܽܥ ൌ ∑ ܳܲ ൅ ௡ܨܱ
௜ୀଵ - (3)

݀݁݊݅ܽ݃	݈݁݃݀݁ݓ݋݊ܭ	݂݋	݈݁ݒ݁ܮ ൌ ∑ ሼ2 ൈ௡
ௌ஼೔సభ

ሺܮ௡ሻሽ െ 1- (4)

The Table.3 is calibrated when some of
the requests fail to satisfy the analyst needs. This
failure may arise as some of the services that are
required to implement the change request may be
unavailable. The MTBF (5) (Mean Time Between
Failure) is difference the number of services that
may be available (ܴݎ݁ݏ௜) currently and the total
number of services (ܴݎ݁ݏ௜ሻthat are required to
perform the change to the number of requests that
failed to implement (ܥܨ௜)..MTTR (Mean Time To
Recovery) is the time that has been spent waiting
for the unavailable services to become available for
implementing the change. MTTR (6) (Mean Time
To Recovery) is the time i.e. down time (ݎ݁ݏܶܦ௜)
that has been spent waiting for the unavailable
services to become available for implementing the
change over the number of requests that failed to
implement (ܥܨ௜).

ܨܤܶܯ ൌ ∑ 			஺௦௘௥೔ିோ௦௘௥೔
ி஼೔

௡
௜ୀଵ --(5)

ܴܶܶܯ ൌ ∑ ஽்௦௘௥೔
ி஼೔

௡
௜ୀଵ 	 			-- (6)

For all the cases, since our change
management framework is based on automatic
retrieval and evaluation, there may be some risk
associated with this automation, which is measured
with the help of the metric called Risk (7). From
the highlighted data set in Table2, we find that by
making changes using our change management
framework has lower risk.

݇ݏܴ݅ ൌ ∑ 1 െ௡
௜ୀଵ ቊ

ௌ஼೔		∩ቀ
ೀᇲ
ೀ ቁ

்஼
ቋ ൈ 100	--(7)

No of
change
requests

LCS
Size

Effect
of
Change

Accuracy Correctness Change
Reaction
Time

Level of
Knowledge
Gained

Risk

1 2 Success 99.9% 99% 2sec 3 0.1%

2 5 Success 99.9% 99% 7sec 5 0.1%
5 3 Success 99.9% 98.9% 2 min 5 0.1%

3 5 Success 98.9% 98.9% 1 min 9 0.2%

M.Thirumaran et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1439-1450

www.ijcsit.com 1448

Table 3
 Result Analysis for failure cases

The Precision (8) and Recall (9) for our change
management framework for both success and
failure cases is plotted in Fig.10 and 11. It can be
observed from the graph that the precision value for
successful cases is found to be dominant over the
recall values. On the other hand, the recall value is
higher than the precision value during the failure
cases because during the failure cases some of the
relevant services become unavailable and hence the
semantic information about the services could not
returned by the system leading to an increase in the
recall value.

݊݋݅ݏ݅ܿ݁ݎܲ ൌ
௚ሺ௫ሻ

௚ᇱሺ௫ሻ
 ---(8)

ܴ݈݈݁ܿܽ ൌ
௚ሺ௫ሻ

௚ሺ௫ሻା௙ᇱሺ௫ሻ
 -- (9)

Fig10. Precision and Recall for Successful Cases

Precision is calculated as the number of
functions that were found to be relevant (݃ሺݔሻ
) over the total number of functions
[containing both relevant and irrelevant (݃′ሺݔሻ
)] returned by the system for making the
changes. Similarly, recall is the number of
functions that were found to be relevant (݃ሺݔሻ)
over the summation of the total number of
functions ݃′ሺݔሻ and the number of functions
that are actually found to be relevant but not
returned by the system,	݂′ሺݔሻ.

7. DISCUSSION

7.1 Research Contribution

The Semantic Reasoner based change
management framework contributes the following
points and thus manages the evolving changes in
the LCS. The research has the following salient
features:

 Presents a parsing methodology to
determine the possibility of implementing
the requested change before it is being
implemented at the service level with the
help of the predictive parsing mechanism.

 Maintains the state information of the
services involved in change enactment by
the FSM methodology. This methodology
is also responsible for automatic validation
of the requested change.

 Presents a framework where the
functionality of the services is also included in
the ontology so that the more information
about the services is provided to the analyst
during the change enactment.
 Presents an environment for the analysts
to implement the changes so that the cost and
time spent on the IT professionals for making
the changes is reduced.

Fig11. Precision and Recall for Failure Cases

0

0.2

0.4

0.6

0.8

1

Size=3 Size=5 Size=5 Size=5

Precision

Recall

0

0.2

0.4

0.6

0.8

1

Precision

Recall

No of
change
requests

No of change
requests failed

LCS
Size

Mean
Time
Between
Failure

Mean Time
To
Recovery

Accuracy Correctness Level of Knowledge Gained Risk

5 1 4 2 3 99.9% 99.9% 3 0.1%

3 1 5 2.1 3 99.9% 99.9% 3 0.1%

3 2 7 2.5 3.2 99.8 99.7 5 0.2%

2 1 5 0.9 2 99.9% 99.9% 7 0.1%

M.Thirumaran et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1439-1450

www.ijcsit.com 1449

8. CONCLUSION AND FUTURE
ENHANCEMENT

This paper proposes a Change Management
Framework that satisfies the analyst requirements
for implementing the change by referring an
enriched ontology set. The creation of an enriched
ontology leads to the reduction in the number of
bugs, provides a better process clarity and also a
clarification in the workflow .Enriching the
ontology also reduces the percentage of risk
thereby ensuring the accuracy of implementing the
change. The parsing technique used in the
framework ensures that the change request can be
implemented before it is being implemented at the
service level. The FSM that assists the analyst in
the Change Management Framework also leads to
the decrease in the overall computation time for
implementing the change. Although, our
framework determines the possibility of making the
requested change previously so that the faults or
disturbances that may arise during the change
implementation at the service level are reduced, it
is done only by the system. Therefore, our future
goal can be to provide a sophisticated GUI at the
schema level that will facilitate the analyst to
analyse and implement the change. Finally, our
framework can also be extended to support the
implementation of concurrent change requests.

REFERENCES

[1]. Salman Akram,Xiaobing Wu,Virginia Tech, USA,Athman
Bouguettaya,Xumin Liu,CSIRO ICT Centre,
Australia,Armin Haller,Florian Rosenberg,Rochester
Institute of Technology,USA,” A Change Management
Framework for Service Oriented Eterprises”, International
Journal of Next-Generation Computing (IJNGC), vol. 1,
no. 1, pp 1-077, September, 2010.

[2]. Salman Akram,Athman Bouguettaya,Bramhim
Medjahed,”Supporting Dynamic Changes to in Web
Service Environments”, Springer-Verlag Berlin
Heidelberg, ISBN -978-3-540-20681-1, pp.319-334,2003.

[3]. Xumin Liu, Member, IEEE, Athman Bouguettaya, Fellow,
IEEE, Jemma Wu, and Li Zhou,” Ev-LCS: A System for
the Evolution of Long-term Composed Services”, IEEE
Transactions on Services Computing, vol. 5, no. 2,pp.102-
115, april-june 2010.

[4]. Xumin Liu , Athman Bouguettaya ,” Managing Top-down
Changes in Service-Oriented Enterprises”, Web Services,
2007. ICWS 2007. IEEE International
Conference,pp.1072-1079 July 2007.

[5]. Dimitris Apostolou, Gregoris Mentzas, Ljiljana Stojanovic,
Barbara Thoenssen and Tomás Pariente Lobo, “A
collaborative decision framework for managing changes in
e-Government services”, Elsevier Journal of Government
Information Quarterly, vol. 28, no.

[6]. Aabhas V. Paliwal, Basit Shafiq,Jaideep Vaidya, Hui Xiong
and Nabil Adam,” Semantics-Based Automated Service
Discovery”, IEEE Transactions on Services Computing,
vol. 5, no. 2,pp.260-275, april-june 2012.

[7]. Tamer A. Farrag, Ahmed I. Saleh, H.A. Ali,” Semantic web
services matchmaking: Semantic distance-based
approach”, Elsevier Journal of Computers & Electrical
Engineering, Volume 39, Issue 2,pp.497-511, February
2013.

[8]. Meditskos, Georgios ; Dept. of Inf., Aristotle Univ. of
Thessaloniki, Thessaloniki, Greece Bassiliades N,
“Structural and Role-Oriented Web Service Discovery
with Taxonomies in OWL-S”, IEEE Transactions on
Services Computing, vol. 5, no. 2,pp.278-290, April-June
2010.

[9]. Carlo Mastroianni, Giuseppe Papuzzo,” A self-organizing
P2P framework for collective service discovery”, Journal
of Network and Computer Applications, Volume 39, pp:
428-437, March 2014, Pages 214-222.

[10]. Sourish Dasgupta, Anoop Aroor, Feichen Shen, And
Yugyung Lee,IEEE,” SMARTSPACE: Multiagent Based
Distributed,Platform for Semantic Service Discovery”,
IEEE Transactions on Systems, Man, and Cybernetics:
Systems, vol. 44, no. 7,pp.805-821, July 2014

[11]. Jiujun Cheng, Cong Liu, mengchu Zhou, Fellow, IEEE,
Qingtian Zeng, and Antti Ylä-Jääski,” Automatic
Composition of Semantic Web Services Based on Fuzzy
Predicate Petri Nets”, IEEE Transactions on Automation
Science and Engineering, Volume:PP , Issue: 99 , ,pp. 1 –
10,28 January 2014

[12]. Son N. Han, Gyu Myoung Lee and Noel Crespi,” Semantic
Context-Aware Service Composition for Building
Automation System”, IEEE Transactions on Services
Computing, vol. 5, no. 2,pp.752-761, April-June 2013.

[13]. Ourania Hatzi, Dimitris Vrakas, Mara Nikolaidou, Nick
Bassiliades, Dimosthenis Anagnostopoulos, and Ioannis
Vlahavas.,” An Integrated Approach to Automated
Semantic Web Service Composition through Planning”,
IEEE Transactions on Services Computing, vol. 5, no.
3,pp.319-332, July-September 2012

[14]. Szu-Yin Lin, Chin-Hui Lai, Chih-Heng Wu, Chi-Chun
Lo,” A trustworthy QoS based collaborative filtering
approach for web service discovery”, Elsevier Journal of
Systems and Software, Volume 93, pp. 217-228, July 2014.

[15]. José Antonio Parejo, Sergio Segura, Pablo Fernandez,
Antonio Ruiz-Cortés,” QoS-aware web services
composition using GRASP with Path Relinking“,Elsevier
Journal of Expert Systems with Applications, Volume 41,
Issue 9, pp. 4211-4223,July 2014.

M.Thirumaran et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1439-1450

www.ijcsit.com 1450

